
Clearly	print	your	name	as	it	appears	on	Canvas:	
																																												Clearly	print	your	netid:	
	

Part 1
Give	the	TYPE	of	the	value	returned	by	each	of	the	following	expressions.		If	more	than	one	
expression	is	given,	assume	that	each	one	is	executed,	in	order,	and	give	the	type	of	the	value	
for	the	last	expression.			You	may	assume	that	the	image	procedures,	including	iterated-overlay	
and	iterated-beside,	have	been	defined.	

• If	it	is	a	primitive	type	such	as	a	number,	string,	Boolean	or	image	(picture),	just	give	
the	name	of	the	type.		So	if	the	result	is	a	number,	just	say	“number.”	

• If	it	is	a	record	type	(a	struct),	just	give	the	name	of	the	record	type.		For	example,	if	it’s	
an	album	object,	just	say	“album”	

• If	it	is	a	list	
o If	all	the	elements	of	the	list	are	the	same	type,	say	“(listof	type)”	where	type	is	

the	type	of	data	in	the	list.		For	example	(list	1	2	3)	is	a	(listof	number).	
o If	it	is	a	list	with	different	types	of	data,	say	(listof	any)	
o If	you	know	the	result	is	specifically	the	empty	list,	which	has	no	elements	and	

therefore	no	element	type,	just	say	“empty	list”.	
o If	you	know	the	result	is	a	list	but	you	don’t	know	the	type	of	data	in	it,	just	say	

“list”	and	we	will	give	you	partial	credit.	
• If	the	result	is	a	procedure,	give	its	type	signature,	i.e.	its	argument	and	return	types.		In	

particular,	write	the	type(s)	of	its	argument(s)	followed	by	an	arrow	and	the	type	of	its	
result.		If	the	procedure	accepts	any	type	of	value	for	an	argument,	just	say	“any”.		For	
example:	

o The	type	of	the	abs	procedure	is	
					𝑛𝑢𝑚𝑏𝑒𝑟 → 𝑛𝑢𝑚𝑏𝑒𝑟	

o The	type	of	the	integer?	procedure	is:	
					𝑎𝑛𝑦 → 𝐵𝑜𝑜𝑙𝑒𝑎𝑛	

o The	type	of	the	<	procedure	is:	
					𝑛𝑢𝑚𝑏𝑒𝑟 𝑛𝑢𝑚𝑏𝑒𝑟 → 𝐵𝑜𝑜𝑙𝑒𝑎𝑛	

o The	type	of	the	square	procedure	is	
					𝑛𝑢𝑚𝑏𝑒𝑟 𝑠𝑡𝑟𝑖𝑛𝑔 𝑐𝑜𝑙𝑜𝑟 → 𝑖𝑚𝑎𝑔𝑒	

• If	you	know	the	expression’s	value	is	a	procedure,	but	don’t	know	its	argument	or	
return	types,	just	say	“procedure”,	and	we	will	give	you	partial	credit.	

• If	executing	it	would	produce	an	exception,	say	“Exception”.		You	do	not	have	to	
explain	what	type	of	exception	or	why.

EECS-111 Exam 1
DO NOT OPEN THIS EXAM
UNTIL INSTRUCTED TO

Part1
Part2
Part3
Total

Clearly	print	your	name	as	it	appears	on	Canvas:	
																																												Clearly	print	your	netid:	
	

1.		(define	mystery	
													(lambda	(x)	(+	x	1)))	
						(mystery	7)	
	
	
	
	
	
2.		(+	(3)	(+	1	2))	
	
	
	
	
	
3.	;	An	album	is...	
				;	-	(make-album	string	string	string)	
				(define-struct	album	[title	artist	genre])	
				(define	lib	(list	
																											(make-album	"Abbey	Road"	
																																																			"The	Beatles"	
																																																			"Rock")	
																											(make-album	"Let	It	Be"	
																																																			"The	Beatles"	
																																																			"Rock")))	
				(map	album-title	lib)	
	
	
	
	
	
	
4.		(lambda	(r	c)	
												(circle	r	"outline"	c))	
	
	
	
	
	
5.		(empty?	(filter	(lambda	(y)	(=	y	47))		
																																(list	1	2	3)))	

6.		(filter	(lambda	(p)	(or	(<	(posn-x	p)	10)	
																																												(<	(posn-y	p)	10)))	
																(make-posn	20	30))	
	
	
	
	
	
7.		(iterated-overlay		
										(lambda	(x)		
															(rotate	x		
																												(square	x	"solid"	"purple")))	
										100)	
	
	
	
	
	
	
8.		(lambda	(z)				
									(ormap	odd?	z))	
	
	
	
	
	
	
	
9.		;	A	rabbit	is...	
					;	-	(make-rabbit	number	string)	
					(define-struct	rabbit	[weight	food])	
					(make-rabbit	10	"apples")	
	
	
	
	
	
	
10.		(rest	(map	odd?	(list	1	2	3)))

Clearly	print	your	name	as	it	appears	on	Canvas:	
																																												Clearly	print	your	netid:	
	

Part 2
Each	of	the	following	questions	shows	some	code	being	executed	at	the	Racket	prompt,	along	
with	the	output	or	error	it	generated,	and	the	intended	output	that	the	programmer	wanted.		
Give	the	correction	to	the	code	to	produce	the	desired	result.	
	

• Fix	the	code	that’s	there;	don’t	rewrite	it	from	scratch.		In	grading,	we’re	looking	for	
evidence	that	you	understand	the	bug	in	that	particular	code,	not	that	you	understand	
how	to	write	new	code.	

• You	do	not	need	to	provide	an	explanation,	although	you	are	free	to	do	so	if	you	like.	
• It	is	sufficient	to	write	your	correction	on	top	of	the	existing	code;	you	don’t	need	to	

recopy	it.	
	
	
	
Question 1
Interaction	 Desired	output	
>	(define	(contains-my-num?	n	lon)	
							(if	(empty?	lon)	
												true	
												(or	(=	n	(first	lon))	
																		(contains-my-num?	n	(rest	lon)))))	
>	(contains-my-num?	4	(list	1	2	3))	
#true	
>	

#false	
	

	
	

Question 2
Interaction	 Desired	output	
>	(iterated-beside	(square	50	"outline"	"black")	5)	
iterated-beside:	expects	procedure,	given	#<image>	
>	 	

	
	
	
	

Clearly	print	your	name	as	it	appears	on	Canvas:	
																																												Clearly	print	your	netid:	
	
	
	
	
Question 3
Interaction	 Desired	output	
>	(define	(sum-list_iterative	lon)	
						(local	[(define	(help	alon	partial_sum)	
																									(cond	[(empty?	alon)		partial_sum]	
																																				[else																				(help	(rest	alon))]))]	
								(help	lon	0)))	
>	(sum-list_iterative	(list	1	2	3))	
help:	expects	2	arguments,	but	found	only	1	
>	

6		
(i.e.	the	sum	of	the	list)	

	
	
	
	
	
	
	

Question 4
Interaction	 Desired-output	
>	(define-struct	snake	[weight	food])	
>	(define	mysnakes	(list	(make-snake	10	"mice")	
																																											(make-snake	5	"carrots")	
																																											(make-snake	7	"grass")))	
>	(foldl	0	+	(map	snake-weight	mysnakes))	
foldl:	first	argument	must	be	a	function	that	expects	
two	arguments,	given	0	
>	

22	
(i.e.	the	sum	of	the	weights	of	
the	snakes)	
	

	
	
	

Clearly	print	your	name	as	it	appears	on	Canvas:	
																																												Clearly	print	your	netid:	
	
Part 3
	
Each	of	the	following	questions	shows	some	a	procedure	definition.	In	the	space	below	the	
procedure	definition,	provide	one	valid	test	(check-expect)	of	the	procedure.		
	
	
Question 1

;;	add2:	Number	->	Number	
;;	adds	2	to	the	given	number	
(define	add2	
					(lambda	(x)	
										(+	x	2)))	
	
	
	
	 	
	
	
	
	
Question 2

;	a	dillo	is	a	
;	-	(make-dillo	number	boolean)	
(define-struct	dillo	[weight	dead?])	
	
;;	feed-dillo	:	dillo	->	dillo	
;;	feeds	a	dillo	a	2lb	meal	if	its	alive	
(define	(feed-dillo	d)	
				(make-dillo	(if	(dillo-dead?	d)	
																														(dillo-weight	d)	
																														(+	2	(dillo-weight	d)))	
																									(dillo-dead?	d)))	
	
	
	
	 	

